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ABSTRACT

The paper is a survey of some aspects of information based selection of

numerical methods. Some theoretical ideas on how to deal with uncertain

information are discussed and the example of an universal quadrature formula

is introduced. Certain aspects of the selection of finite element method and

adaptive mesh construction are discussed. Numerical examples illustrate the

th e o r e t i ca l a s p e c ts .. . .. .
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I. INTRODUCTION

Any practical computation is aimed to obtain reliable results in an

optimal way. The notion of the optimality is very complex in practice. It

includes not only computer cost (for example, depending on various aspect of

hardware), but includes also the manpower cost (salaries). Manpower cost

makes today typically 90-95% of the total cost of an engineering project. The

optimal choice-optimization of the method-strongly depends on the goal of the

computation and on the available information. An essential part of the

computation is also the assessment of the reliability of the obtained

results. Let us refer to [Noor, Babuska (1987)] which gives a survey of the

principles of the quality assessment of the finite element computation and

major literature (about 200 references cited). This survey addresses many

aspects inclusive adaptive approaches, optimal extraction of the desired

information from the computed data (in the post processing phase), a-

posteriori error analysis, etc.

In practice any computation is information based. Many numerical

methods and codes for solving mathematically formulated problems are available

today. A very important problem is to characterize the cod1itions under which

a concrete method performs well. In engineering a large effort is spent to

obtain indirectly such characterization by comparative computational studies

of various benchmark problems. See e.g. [MacNeal, Harder (1985)], [Robinson,

Blackham (1981)] any many others. Unfortunately, mathematical theory here is

practically nonexistent.

Presently the research is also going on how to use the expert systems

(in general, application of the principles of artificial intelligence) to

select a numerical method, its part or other basic parameters of the

computational analysis. See e.g. [Babuska, Rank (1987)], [Rogers, Barthelemy
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(1985)], [Dym (1984)] and others.

Mathematically the optimal selection of numerical methods was for long

time under consideration. See e.g. [Babuska, Sobolev (1965)], [Bachvalov

(1968)], [Sobolev (1974)], [Traub, Wozniakowski (1985)], for basic ideas,

results and literature. We will address some aspects of the optimization of

numerical methods below.

Information about the class of problems (or set of their solutions)

under consideration is essential for the optimal selection of a method. For

theoretical aspects of the notion of an information,optimality and information

based complexity, we refer to [Wozniakowski (1985)].

It is imperative to concentrate on information which is practically

available and realistic and not only mathematically elegant and convenient.

The tests on benchmark model problem reflecting the practice are necessary to

keep the research in the prospective. The optimal method selection depends

strongly on the set of solutions (information). Some mathematically elegant

results could be practically misleading if taken out of context. For example

[Smoljak (1966)] has shown, in the case of quadrature formulae, that for

convex balanced set of integrated functions the linear algorithm is as good as

nonlinear (adaptive) one. Nevertheless, he (see also Bachvalov [1968])

underlined that result of this type is very information dependent and has not

to be overstated in general.

Heuristics is, and has to be, used directly or indirectly in the

selection of an optimal method. This heuristics is either in the selection of

the available information (although following mathematical theory can be

rigorous) or in the optimization reasoning itself (and it is not

mathematically rigorous). A very elegant analysis based on a probabilistic.

justification of practical heuristic arguments is in [Gao (1986)].

-p.
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We will address here some problems and mathematical results and will

present some basic ideas on sample examples. For simplicity we will discuss

some aspects related to 3 directions.

a) Selection of nonadaptive methods.

b) Feedback and adaptive methods.

c) Reliability assessment.

V
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2. SELECTION PRINCIPLES FOR NONADAPTIVE METHODS

2.1. THE QUADRATURE FORMULA

The simplest example studied in detail in the literature is the problem

of the optimal quadrature formula. This example can also serve as a prototype

of various approaches used in more complex setting.

The notion of the optimality is very broad and relates to different

types of convergence. See, e.g. [Sobolev (1962a)], [Sobolev (1962b)] and

others. For an extensive theory of optimal cubature formulae and the

functional analytic prerequisites for the study of optimal formulae, we refer

to the large monography (808 p) of [Sobolev (1974)].

Let us address some aspects of quadrative formula in its most elementary

setting. Let

2w
F(u) - f u(t)dt

0

be a functional defined on a certain space of continuous functions on I

(0,2w). Assume that the values u(ti) are computable for any 0 < ti < 27

(and only these values are computable). Let us be interested in the

quadrature formula using N function values with the minimal error. This

leads to the following problem. Given N > 0, integer, find 0 ti  2n,

i 1,2,...,N such that

N
(1) IF(u) - I u(ti)il E(u,N)

i-I

is minimal over a set S of functions u, i.e., let us be Interested in

(2) inf sup E(u,N).
t i ,a i uES 'p

The formula which achieves (2) will be called optimal and denoted by Q(S,N).

%p
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Essential here is the set S. It is typically selected as the unit ball in a

Banach space. In (2) we have taken the infimum over all 0 _ t I . 2n and

ai without any constraints. We can be also interested in the case when ti

are constrained to uniform mesh, etc. For various results related to the

optimality of this type, we refer to [Sobolev (1974)], Nikolski (1958)],

[Traub, Wozniakowski (1980)] and others. The main problem for the application

of the selection of a formula based on this (worst case) optimality principle

is the selection of the set S. To illustrate this difficulty, let us

consider one parametric family (scale) of spaces Sk

Sk {u I lulk _

where Hk(I), k > 1/2 is the standard Sobolev space. The optimal formula

Q(Sk,N) depends on k and N. Hence, the following natural question is:

For a concrete u, what k to select? In this connection we can deal also

with countably normed spaces, i.e. to assume that

lUHk < (k), 1I) < k <

with a-priori given 0(k). For more we refer once more to [Sobolev (1974)]

and also to [Babuska, Prager, Vitasek (1966)].

It seems to be, that the selection of the quadrature formula as an

optimal one with respect to a special choice Sk, is practically ineffective

because of the uncertainty in the selection of Sk.

Let us discuss this aspect on the problem when the function u is 2n-

periodic. The problem of integration of a periodic function was analyzed in

many papers. For example [Bachvalov (1964)] studied optimal lower and upper
(r I , ... , r s )

bounds for the errors in s-dimensional cases of classes H of
spof

:5,
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functions u(x1 ,...,xs ) having period p in every direction and

if  ' ' S ) IL < 1. The estimates were the best possible ones up to the
p

term log N. The upper estimates were obtained by number theoretical

approaches of [Korobov (1963)] and the lower ones were studied by the theory

presented in [Kolmogorov, Tichomirov [1959)]. Many other results are

available.

Let us return now to the one dimensional case of periodic function and

address the problem of uncertainty of the space selection. For a detailed

theory, see [Babuska (1968)]. First we could ask: What is the intuitive

content of the statement that a (complex) function u is a 2-periodic,

continuous one? We can formulate it so, that it belongs to a Hilbert space

H which has the following property P:

PI: If f E H, then f is continuous.

P2: H is dense in C.

P If c is real, f E H, then also g(x) - f(x+c) E H and

IflH Ig .

P4: There exists K(H) such that

Iflc K(H)IfIH

(We restrict ourself on the case of Hilbert spaces only).

We have

THEOREM 1. Let H be a Hilbert space having property P. Then

(3a) 1) eikx E H, k - ... ,-,,1,...

(3b) 2) functions eikx, k - ...-1,0,1... create orthogonal basis of H

(3c 3) denoting nk - le ikx 1 then

(3c) 3
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k=Ok

Space satisfying the condition P, respectively (3a), (3b) and (3c) will be

called a periodic space. We will need also a stronger notion. The space H

is called strongly periodic, if it is periodic and

(3d) leikXH- e-ikx IH

I ijx i kx(3e) If iJj > Ikl, then lei1H > e 1H

(3f) 2 -2 D0 a
[[n] t [anl+tn < D, 0 c 2

n 1 Integer

where [Can] means the integral part of an.

Let us now denote

n
(4) w(n,H) inf sup IF(u)- u(t)a I

aiptj IUH<_ j-1

n
(5) 6(n ,H) inf SUP IF(u) - I a( n(

(6) A(n,H) = sup JF(u) - Tn (u)I
luIH<l

where

(7) Tn(U) u(-- Z
n nj nJ.1

is the trapezoid formula. Obviously w is related to the optimal formula for

all distributions of tj, 6 when we restrict ourself to uniform mesh and

A is the error for the trapezoid formula.

Intuitively, one can expect that, the trapezoid formula compares well

with the optimal one. Nevertheless, we have

.
.4".
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THEOREM 2. Let > 0, j - 1,2,... arbitrary. Then there exists a

periodic space H such that

A(n,H)
(8) lim sup w(nH)"

n-

THEOREM 3. Let H be any strongly periodic space. Then

A(ri,H)_
(9) lim sup , <

THEOREM 4. For every period space

(10) A(n,H) > 6(n,H). 0

THEOREM 5. Let H be a periodic space. Then

A(n,H) -(11) lim 1.,H

n-w6(n,H)-

Only the trapezoid formula has the property that

A (n, H) <!

(12) lir sup 6(n,H) <

for all periodic spaces. 0

These theorems show

1) Speaking about periodic function u, we likely mean that it belongs

to a strongly periodic space.

2) Although the trapezoid formula is not optimal .or dny H, it is

good for all periodic spaces, i.e. only the trapezoid fomira is a robisl,

formula.

The theorems show that the selection o' in optimail -rrm-,i fr a

particular space is likely a had choice in pra;',iee.

- "£ ".. ..' ." - ,_.r o~i.,...., ..,.-_.., '.-. ' '.,,.-"_.,i -. -_.-.'.- .']---" - . -"-' '.,' .- ." - - . -- '.".-.. -'"- ",-".-"-" . ".".' .- ,.-
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2
Let us illustrate it in a concrete example. Let [u4H H

(W
2 +(u' 2 )dx, then the formula

0

(13) C(n,H)Tn(u)

(14) C- 1 (n,H) - 1 + L 1 1

n t-1 (tA)12 +
n

is the optimal one, i.e.

sup JF(u) - C(n,H)Tn(u)I p(n,H).

Assume now that u - ea a 3,10. Then

1 F(e3 sin x) - 4.88079258586502408
Tir %

1 10 sin x
I, F(e - 2815.71662846625447

and the values obtained by the trapezoid and the optimal formula are given in

Table 1.

TABLE 1

TRAPEZOID FORMULA OPTIMAL FORMULA

n a - 3 a - 10 a " 3 a - 10

8 4.88241999058958100 2047.90959481962441 4.64604604.. 2900.35030.•

;16 4.88079258593666173 2815.77672896656761 4.81902223.. 2780.14081..'

124 4.88079258586502408 2815.71662897903758 4.85310536.. 2799.74394..:1

Table I suggests that in practice only for small n and small accuracy

the "optimal" formula can be better, provided that the space H is properly

selected (which will not likely to happen). For detailed theory and many

additional aspects, we refer to [Babutka (1968)].

-,7
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The observation about the universal property of the trapezoid formula

and its analysis was made later in various settings by various authors. See,

e.g., [Motornyj (1974)] and others. We refer here also to [Traub,Wozniakowski

(1980)] where many papers about optimal formulae are cited.

Similar principles of (worst case) optimality can be applied in many

more complex cases. We mentioned the case of optimal difference formula, the

optimal choice of the trial functions in variational methods, etc., see, e.g.

[Babu'ska, Prager, Vitasek (1966)], solution of initial value problem for

ordinary differential equation, see, e.g. [Bachvalov (1963)], integral

equations, see [Emeljanov, Iljin (1967)] and many others.

2.2. THE REGULARITY OF THE SOLUTION AS THE BASIC INFORMATION FOR FINITE

ELEMENT SELECTION

Let us consider the model problem

(15a) -Au - f on Q,

(15b) u - g on 30,

where 0 c R2  is a bounded domain and a$] is its boundary.

The finite element method consists (in the most simple case) in the par-

tition of Q into the set of triangle and quadrilateral elements Ti (the

mesh) and in the best approximation of u (in HI(Q)) by piecewise poly-

nomials of degree pi on xi. The space of these piecewise polynomials is

called trial space and its dimension N is called the number of degrees of

freedom.

Typically it is assumed that the only information available about u is

that it belongs to Hk(Q), k > 1 and the optimal error (for a quasiuniform

mesh) is

I , - %w ,, -.' . -" '.,'..% .. '. " -.. ,-=. . ..



(I 6a) lei CN 2H(~)lul k

where

(16.b) U min(p,k-1)

when pi - p for all elements Ti. This error is the optimal one. Removing
k-1

constraint Pi p' the best estimate is still O(N 2 which can be

easily be proven by concept of the n-width.

If no other information than u ( Hk() is available, then the uniform

partition is obviously preferable because it leads to the best possible

estimate. For more details, see [Babu'ka, Suri (1987)].

The information that u E Hk(Q) is very far from the optimal one in

practice (e.g. structural mechanics). Usually the data (i.e. boundary, f)

are piecewise analytic. Then the solution of the problem (15a,b) belongs to a

countably normed space. It is possible to prove that

(!7a) J IDKulZ$ _2_ (x)dx Ck!d k , k = 2,...

where

(17b) Dk-2+CB(x) - nix -xl
k - 2 +B

and x, are typically the vertices of 10.

For the proof, see [Babuska, Guo (1985)], [Babuska, Guo (1986)]. We

have now

THEOREM 6. Let u E HI(Q) satisfies (17). Then there evists sequence

of meshes and elements degrees pi on Ti such that

.J

'tp
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3
(18) leil < Ce-

H (11)

where Y > 0 depends on 8 and d in (17).

The exponential rate (18) can be obtained in practical computations.

For more, see [Guo, Babu'ka (1986a)], [Babu~ka, Guo [1986)]. Results of this
, , p

type were implemented in the commercial finite element code PROBE (Noetic

Tech., St Louis), [Szabo (1985)]. For the survey paper about the state of the

art of the h-p version of the finite element method, we refer to [Babuska

(1986)].

The decision in which space the solution u should be imbedded is

crucial for selection of the finite element meshes and degrees. In Fig. 1 we

show the accuracy of the computation of the elasticity problem of a L-shaped

domain by various finite element methods (meshes, degrees) as function of N

(which roughly expresses the cost) and which are optimal for various selection

of the spaces of the solutions. This shows similar aspects we have addressed

in previous section, namely very different performances of the method.

In one dimensional setting much more details are available. See [Gui,

Babuska (1986)]. Consider the following sample problem: Let u(x) -x -

x, a > % be given on I - (0,1). Consider the set of all partitions of A

of I

A := 0 - AO < ..- < Am 1, ' (Xj.1 ,Xj).

Denote by S(A,p) - {u E HO(I)Iu is polynomial of degree pi on Iii.

Let us be interested now on what can be said about

,%.
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(18) Q = u .i 1

wES(A,R) H (I)

dim S(A,p)-N

We have then

THEOREM 7.

(19) C1 (a) 1 --- - 1 4 N < Q - c2 (a) go

2

where go (VC- 1)2.

I

':
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3. THE ADAPTIVE METHODS

It is worthwhile to distinguish between a feedback method and an

adaptive method. A feedback method is any method which utilizes the computed

values to steer its direction. An adaptive method is a feedback method which

is optimal in a precise sense. For more elaboration, we refer to [Rheinboldt

(1983)], [Babuska (1986b)].

3.1. THE FINITE ELEMENT METHOD

Let us explain the main ideas on the example of an adaptive finite

element solver for one dimensional boundary value problem

(20a) -(au')' + bu - f x E I = (0,1)

(20b) u(O) - u(M) - 0.

The finite element method consists of the mesh

A := Ox 0 < x1 < ... < xN - 1

of the cardinality N K(A). Denote by I3 = (xj.,xj) the element. In

the most simple case the finite element solution u(A) c H6(I) is a

continuous function on I, linear on I, J - 1,...,N. Given the mesh A,

the finite element solution u(A) is uniquely defined. Denoting by u0  the

(exact) solution of (20), the error is e(A) - u(A) - uo . Assume that the

error is measured in the energy norm lel

lei2 2 f (ae'2 + be2 )dx.
E 0

The feedback method now consists of the construction of a sequence

j - 1,2,..., so that Ai depends on At and u(At), Z < J. The

operator 1r. giving Aj is called transition operator and defines the

li
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feedback. Sequence (A t } is called the trajectory. A fecdback method is

called adaptive if it creates an optimal trajectory. Various optimaliLy

definitions can be considered. See [Babuska (1986b)]

We will call the trajectory (A optimal with respect to the

convergence if

(21) le(Aj)Is * - as j *

Define now

(22) 0 (N) inf Je(A)
c( A) -N

i.e. 4u(N) is the smallest error which can be obtained by the mesh with the

cardinality N.

We will call the trajectory (Ai } optimal with respect to convergence

rate if

Ile(Ai)IE
(23) lim sup (i) < .

For a transition operator Ct defining the feedback method, we define

Sc(uO,A ,a) (respectively SR(Uo,A , )) (uoA 1 ,l *)I the trajectory is optimal

with respect to the convergence (convergence rate)). The goal is to

design c so that S O and SR will be so large that they include all cases

which are important in practice. In [Babu'ka, Vogelius (1984 )] we considered

some feedback methods (the details are technical and cannot be given here)

which have the following properties:

1) Sc(uOiA'(') = I(I), i.e. that the feedback leads always to the

convergence.

2) SR(uO,A,,f) 0 HO(I). Sufficient condition for 0 SR are

given. These conditions are satisfiLd for solutions which are important in

" Q%' . .K " - . •
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application as, e.g., u0  x" - x, a > % and many other functions.

Functions uEH6(I), u SR(uo,AI,C) were also constructed. For

mathematical details see [Babu~ka, Vogelius (1984)].

The selection of the method depends very much on the information about

the solution. This information is usually not too reliable and hence robust

methods have to be preferred; in our case, robustness is directly related to

the size of SR. The decision about the available information will always be

left to the user. Likely, the physical-engineering arguments are the most

reliable way to characterize available information. Probability approach does

not avoid this problem because the information about the probability field is

not available and is usually made on very arbitrary basis.

I

We mentioned one dimensional problem. The ideas were extended to more

dimensional problems. See, e.g. [Babuska, Miller (1987)]. An adaptive code

FEARS (for elements of degree p - 1) has been written and experimented with.

Although in more dimensions such a detailed and complete analysis, as in one

dimension, is not available, the numerical experiments indicate that the coded

method is adaptive with respect to the convergence rate for a very broad set

of solution of engineering interest. Fig. 2 shows the finite element mesh for

the elasticity problem of a cracked panel. The exact solution has singularity

at the tip of the crack and uniform mesh would give the rate O(N- ) while

the adaptive solver leads to the rate O(N- 2) (which is the same as for the

smooth solution). As coul' be seen from Table 2, the rate O(N- 2) was

practically achieved. Table 2 shows also the effectivity index e of the

estimator as defined in the next Section.

%"

, '' ° . o * ,, .. " , . " " .' ° °° , " • % .. °" ." . " . .". % . ° .- .° . " •o . . "° • .'V
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Figure 2. The mesh constructed by FEARS for N *617.

TABLE 2

le I

MESH N %el 0

1 101 26.38 .885

2 143 21.35 .991

3 221 16.79 1.058-.

4301 13.61 1.116

5 617 9.63 1.088

As in one dimension, the set S R $ H (Q) and hence there exists cases where

the method does not lead to an optimal (convergence rate) trajectory.

Nevertheless, these cases are very likely without any practical importance.

For the principles of adaptive method, we refer also to [Babliska, Gui (1986)]

and [Noor, Babuka (1987)].

! I J I " l "
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3.2. THE ADAPTIVE ODE's SOLVERS

The modern standard ODE's solvers are of feedback type. They are

usually based on "per unit step" or "per step" tolerance criterion. The

tolerance T (which is an input) has in principle two purposes: the accuracy

control or the feedback control. We will discuss here briefly the feedback

aspects. Let

(23) x - f(t,x), x(O) = x0 , 0 < t < T

be the problem under consideration. Then approximate solution E(t)

satisfies

1(t) f(t, ) *- n(t), E(O) - x0 , 0 < t < T

and we can judge the quality of &(t) by n(t) and define dist(x(t),W(t))

SInILp((0,T)). Now we have

THEOREM 8. The "per unit step" (respectively "per step") approach is

adaptive with respect to the rate of convergence for InL ((0,T))
Coa

respectively 'n'L1((0,T)) measure,for a large set of f.

In practice it is not necessary to find exactly the optimal mesh because

the effectivity of the solution is not too sensitive to the perturbances of

optimal mesh.
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E. A POSTERIORI ASSESSMENT OF THE ACCURACY

The a-posteriori assessment of the accuracy of the computation is

essential but very delicate. For various approaches we refer once more to

[Noor, Babuska (1987)] and literature cited there. In general, for the a- I
posteriori error estimate we desire that the effectivity index 0 of the

estimator E

estimate
true error

has the following properties:

a) K1 < 0 < K2

where K, and K2 are independent of any detailed characteristics of the

mesh, solution, etc.

b) 0 4 1 as E. 0

and for reasonable accuracies .9 < 0 < 1,1 (say),for reasonable problems

and meshes.

It is practically important that 0 is close to one for practical

reasons. Table 2 has shown this effectivity index for the cracked panel

problem. As before, we wish to characterize the set of the solitions and the

meshes for which the above properties hold (i.e. we characterize analogs to

S and SR) "

.-
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5. CONCLUSIONS

Any numerical analysis is information based. Hence, mathematical

analysis is very important, provided that it addresses the pertinent problems

of the computational analysis. Nevertheless, various mathematical results

could be practically misleading if their assumptions are not confronted with

the circumstances of practical computations. Hence, it is imperative to apply

the obtained theoretical results in the environment of practical computations,

made comparative numerical studies and test the applicability of the

theoretical conclusion. Otherwise the results of information based complexity

would have no impact on computational analysis. In the paper we did try to

address some theoretical aspects in the relation with computational practice

in a most simple setting.
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postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This Includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o To be an International center of study and research for foreign
students In numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)
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